Rho-kinase-mediated Ca2+-independent contraction in rat embryo fibroblasts.
نویسندگان
چکیده
Thus far, determining the relative contribution of Ca2+/calmodulin-dependent myosin light chain kinase (MLCK) and Ca2+-independent Rho-kinase pathways to myosin II activation and contraction has been difficult. In this study, we characterize the role of Rho-kinase in a rat embryo fibroblast cell line (REF-52), which contains no detectable MLCK. No endogenous MLCK could be detected in REF-52 cells by either Western or Northern blot analysis. In the presence or absence of Ca2+, thrombin or lysophosphatidic acid (LPA) increased RhoA activity and Rhokinase activity, correlating with isometric tension development and myosin II regulatory light chain (RLC) phosphorylation. Resting tension is associated with a basal phosphorylation of 0.31 +/- 0.02 mol PO4/mol RLC, whereas upon LPA or thrombin treatment myosin II RLC phosphorylation increases to 1.08 +/- 0.05 and 0.82 +/- 0.05 mol PO4/mol RLC, respectively, within 2.5 min. Ca2+ chelation has minimal effect on the kinetics and magnitude of isometric tension development and RLC phosphorylation. Treatment of REF-52 cells with the Rho-kinase-specific inhibitor Y-27632 abolished thrombin- and LPA-stimulated contraction and RLC phosphorylation. These results suggest that Rho-kinase is sufficient to activate myosin II motor activity and contraction in REF-52 cells.
منابع مشابه
The role of RhoA-mediated Ca2+ sensitization of bronchial smooth muscle contraction in airway hyperresponsiveness.
Smooth muscle contraction is mediated by Ca2+-dependent and Ca2+-independent pathways. The latter Ca2+-independent pathway, termed Ca2+ sensitization, is mainly regulated by a monomeric GTP binding protein RhoA and its downstream target Rho-kinase. Recent studies suggest a possible involvement of augmented RhoA/Rho-kinase signaling in the elevated smooth muscle contraction in several human dise...
متن کاملSphingosylphosphorylcholine is a novel messenger for Rho-kinase-mediated Ca2+ sensitization in the bovine cerebral artery: unimportant role for protein kinase C.
Although recent investigations have suggested that a Rho-kinase-mediated Ca2+ sensitization of vascular smooth muscle contraction plays a critical role in the pathogenesis of cerebral and coronary vasospasm, the upstream of this signal transduction has not been elucidated. In addition, the involvement of protein kinase C (PKC) may also be related to cerebral vasospasm. We recently reported that...
متن کاملRho-kinase-mediated Ca -independent contraction in rat embryo fibroblasts
Daniel A. Emmert,* Judy A. Fee,* Zoe M. Goeckeler, Jeremy M. Grojean, Tetsuro Wakatsuki, Elliot L. Elson, B. Paul Herring, Patricia J. Gallagher, and Robert B. Wysolmerski Departments of Pathology, Saint Louis University School of Medicine, St. Louis 63104; Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110; and Department of P...
متن کاملInteraction between src family kinases and rho-kinase in agonist-induced Ca2+-sensitization of rat pulmonary artery
AIMS We investigated the role of src family kinases (srcFK) in agonist-mediated Ca2+-sensitization in pulmonary artery and whether this involves interaction with the rho/rho-kinase pathway. METHODS AND RESULTS Intra-pulmonary arteries (IPAs) and cultured pulmonary artery smooth muscle cells (PASMC) were obtained from rat. Expression of srcFK was determined at the mRNA and protein levels. Ca2+...
متن کاملInvolvement of Ca2+ sensitization in ropivacaine-induced contraction of rat aortic smooth muscle.
BACKGROUND The mechanisms of amino-amide local anesthetic agent-induced vasoconstriction remain unclear. The current study was designed to examine the roles of the protein kinase C (PKC), Rho kinase, and p44/42 mitogen-activated protein kinase (p44/42 MAPK) signaling pathways in calcium (Ca2+)-sensitization mechanisms in ropivacaine-induced vascular contraction. METHODS Endothelium-denuded ra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 286 1 شماره
صفحات -
تاریخ انتشار 2004